Universality of the Stochastic Airy Operator

نویسندگان

  • Manjunath Krishnapur
  • Brian Rider
چکیده

We introduce a new method for studying universality of random matrices. Let Tn be the Jacobi matrix associated to the Dyson beta ensemble with uniformly convex polynomial potential. We show that after scaling, Tn converges to the Stochastic Airy operator. In particular, the top edge of the Dyson beta ensemble and the corresponding eigenvectors are universal. As a byproduct, our work leads to conjectured operator limits for the entire family of soft edge distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airy equation with memory involvement via Liouville differential operator

In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...

متن کامل

From Random Matrices to Stochastic Operators

We propose that classical random matrix models are properly viewed as finite difference schemes for stochastic differential operators. Three particular stochastic operators commonly arise, each associated with a familiar class of local eigenvalue behavior. The stochastic Airy operator displays soft edge behavior, associated with the Airy kernel. The stochastic Bessel operator displays hard edge...

متن کامل

1 3 Ju l 2 00 7 Beta ensembles , stochastic Airy spectrum , and a diffusion

We prove that the largest eigenvalues of the beta ensembles of random matrix theory converge in distribution to the low-lying eigenvalues of the random Schrödinger operator − d dx2 + x+ 2 √ β bx restricted to the positive half-line, where b ′ x is white noise. In doing so we extend the definition of the Tracy-Widom(β) distributions to all β > 0, and also analyze their tails. Last, in a parallel...

متن کامل

2 00 7 Beta ensembles , stochastic Airy spectrum , and a diffusion

We prove that the largest eigenvalues of the general beta ensembles of Random Matrix Theory, properly centered and scaled, converge in distribution to the law of the low lying eigenvalues of a random operator of Schrödinger type. The latter is − d dx2 + x + 2 √ β b′(x) acting on L(R+) with Dirichlet boundary condition at x = 0. Here b′(x) denotes a standard White Noise and the β > 0 is that of ...

متن کامل

Introduction to Kpz

1. A physical introduction 2 1.1. KPZ/Stochastic Burgers/Scaling exponent 2 1.2. Physical derivation 3 1.3. Scaling 3 1.4. Formal invariance of Brownian motion 4 1.5. Dynamic scaling exponent 6 1.6. Renormalization of the nonlinear term 6 1.7. Cutoff KPZ models 7 1.8. Hopf-Cole solutions 8 1.9. Directed polymers in a random environment 11 1.10. Fluctuation breakthroughs of 1999 12 1.11. The Air...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013